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Universal Truths

Form factors give information about distribution of hadron’s

characterising properties amongst its QCD constituents.

Calculations at Q2 > 1GeV2 require a Poincaré-covariant

approach. Covariance requires existence of quark orbital

angular momentum in hadron’s rest-frame wave function.

DCSB is most important mass generating mechanism for

matter in the Universe. Higgs mechanism is irrelevant to

light-quarks.

Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons. Problem

because, e.g., DCSB - an established keystone of low-energy

QCD and the origin of constituent-quark masses - has not

been realised in the light-front formulation.
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QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics – they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.

Despite this, many urgent questions remain unanswered.
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electromagnetic structure?
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about the role of relativity or orbital angular
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Some Questions

Can we understand the rich structure of the
time-like proton form factors in terms of
resonances?

What do we expect for the proton form factor ratio
in the time-like region?

What is the relation between proton and neutron
form factor in the time-like region?

How do we understand the ratio between time-like
and space-like form factors?
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What is the role of two-photon exchange
contributions in understanding the discrepancy
between the polarization and Rosenbluth
measurements of the proton form factor ratio?

What is the impact of these contributions on other
form factor measurements?
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Some Questions

How accurately can the pion form factor be
extracted from the ep → e′nπ+ reaction?
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Status
Current status is described in

J. Arrington, C. D. Roberts and J. M. Zanotti
“Nucleon electromagnetic form factors,”
J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].
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J. Arrington, C. D. Roberts and J. M. Zanotti
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J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].

Most recently:
“ECT∗ Workshop on Hadron Electromagnetic Form Factors”
Organisers: Alexandrou, Arrington, Friedrich, Maas, Roberts
Presentations, etc., available on-line
http://ect08.phy.anl.gov/
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– Goldstone Mode and Bound state

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2
π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.

Highly Nontrivial
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There is a sense in which it is easy to fabricate a
model that can reproduce the elastic
electromagnetic pion form factor

However, a veracious description of the pion will
simultaneously predict the elastic electromagnetic
form factor, Fπ(Q2) AND the γ∗π → γ transition
form factor

The latter is connected with the Abelian anomaly –
therefore fundamentally connected with chiral
symmetry and its dynamical breaking – no mere
model can successfully describe this without fine
tuning

Must similarly require prediction of γ∗π → ππ and
all other anomalous processes
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Minimal requirements

detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included

Interaction between quarks – the Interquark “Potential” –

unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction?
What is the

98% of the volume

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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Predictions confirmed in
numerical simulations of lattice-QCD
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Hadrons

• Without bound states,
Comparison with experiment is
impossible

• They appear as pole contributions
to n ≥ 3-point colour-singlet
Schwinger functions
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What is the light-quark
Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in simulations of lattice-QCD is not related
in any simple way to the light-quark interaction.Craig Roberts: Hadron Form Factors
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)
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−
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5(k;P ) − iΓl

5(k;P ) Mζ

QFT Statement of Chiral Symmetry
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Nontrivial constraint
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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Pion Form Factor

Procedure Now Straightforward
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Pion Form Factor

Solve Gap Equation
⇒ Dressed-Quark Propagator, S(p)

Σ
=

D

γ
ΓS
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ

Solve Inhomogeneous Bethe-Salpeter Equation for
Dressed-Quark-Gluon Vertex, Γµ
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)

Evaluate this final,
three-dimensional integral
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Timelike Pion Form Factor

Ab initio calculation into timelike region
Deeper than ground-state ρ-meson pole
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Timelike Pion Form Factor
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Timelike Pion Form Factor
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Ab initio calculation into timelike region
Deeper than ground-state ρ-meson pole
ρ-meson not put in “by hand” – generated dynamically as a bound-
state of dressed-quark and dressed-antiquark
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same point as studies of mesons in 1995.

Craig Roberts: Hadron Form Factors

JLab User Group, 16-18 June 08. . . 26 – p. 18/45



First Contents Back Conclusion

Nucleon Challenge

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . current expertise at approximately

same point as studies of mesons in 1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

Craig Roberts: Hadron Form Factors

JLab User Group, 16-18 June 08. . . 26 – p. 20/45

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.5746
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0804.3118


First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!
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Nucleon EM Form Factors: A Précis
Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
and L. von Smekal, nu-th/9909082

6 terms . . .
constructed systematically . . . current conserved automatically

for on-shell nucleons described by Faddeev Amplitude
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
and L. von Smekal, nu-th/9909082

6 terms . . .
constructed systematically . . . current conserved automatically

for on-shell nucleons described by Faddeev Amplitude
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other applications . . . Not varied.

Agreement with Pol. Trans. data at Q2
∼> 2 GeV2

Correlations in Faddeev amplitude – quark orbital

angular momentum – essential to that agreement

Predict Zero at Q2 ≈ 6.5GeV2
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Composite axial-vector diquark correlation

Electromagnetic current can be complicated

Limited constraints on large-Q2 behaviour
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Improved current

Composite axial-vector diquark correlation

Electromagnetic current can be complicated

Limited constraints on large-Q2 behaviour

Improved performance of code

Implemented corrections so that large-Q2 behaviour of

form factors could be reliably calculated

Exposed two weaknesses in rudimentary Ansatz
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Improved current

Composite axial-vector diquark correlation

Improved performance of code
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Quantifying pseudoscalar meson “cloud” effects

Locating and explaining the transition from nonp-QCD to

p-QCD in the pion and nucleon electromagnetic form

factors

Explaining the high Q2 behavior of the proton form factor

ratio in the space-like region

Detailing broadly the role of two-photon exchange

contributions
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(Euclidean Green Functions)

Not all are Schwinger functions are experimentally
observable but . . .

all are same VEVs measured in numerical
simulations of lattice-regularised QCD
opportunity for comparisons at
pre-experimental level . . . cross-fertilisation

Proving fruitful.
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Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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There is at least one systematic nonperturbative,
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H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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– Bhagwat, Pichowsky, Roberts, Tandy nu-th/0304003
Linear extrapolation of lattice data to chiral limit is inaccurate
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Mass from nothing.

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Great strides towards placing nucleon studies on same

footing as mesons
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Repeating Fπ(Q2) calculation
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DSE prediction

Lattice results
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Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.

Potentially useful

but must first be understood.
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Two-photon Couplings of
Pseudoscalar MesonsHöll, Krassnigg, Maris, et al.,

“Electromagnetic properties of ground and
excited state pseudoscalar mesons,”
nu-th/0503043
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Two-photon Couplings:
Goldstone ModeHöll, Krassnigg, Maris, et al.,

“Electromagnetic properties of ground and
excited state pseudoscalar mesons,”
nu-th/0503043
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Chiral limit, model-independent and algebraic result
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So long as truncation veraciously preserves chiral symmetry
and the pattern of its dynamical breakdown

The most widely known consequence of the Abelian anomaly
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“Electromagnetic properties of ground and
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Two-photon Couplings:
Transition Form FactorMaris and Tandy, “ Electromagnetic

transition form-factors of light mesons,”
nucl-th/0201017
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DSE result:

normalisation
calculated

ρ-meson generated
dynamically

pQCD result accurate
to ∼ 20% or better for
Q2 ≥ 3 GeV2
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Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
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Quark Core

Responsible for only 2/3 of
result at small Q2

Dominant for Q2 >2 – 3 GeV2
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Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV
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Axial-vector diquark provides significant attraction
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Mass-scale parameters (in GeV)
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B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Constructive Interference: 1++-diquark + ∂µπ
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Deep-inelastic scattering

Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC

Cross-section: Interpreted as Measurement of
Momentum-Fraction Prob. Distribution: q(x), g(x)
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Pion’s valence quark distn

π is Two-Body System: “Easiest” Bound State in QCD

However, NO π Targets!

Existing Measurement Inferred from Drell-Yan:

πN → µ+µ−X

Proposal (Holt & Reimer, ANL, nu-ex/0010004)

e−5GeV – p25 GeV Collider → Accurate “Measurement”

p n

πγ
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Handbag diagrams

Bjorken Limit: q2 → ∞ , P · q → −∞

but x := −
q2

2P · q
fixed.

Numerous algebraic simplifications
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Extant theory vs. experiment

K. Wijersooriya, P. Reimer and R. Holt,

nu-ex/0509012 ... Phys. Rev. C (Rapid)
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